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Abstract

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart

[Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method

and investigate a proposed mechanism for the apparent fluid slip [Phys. Fluids (2003)]. By applying an exponentially

decaying hydrophobic repulsive force of 4 · 10�3 dyn/cm3 with a decay length of 6.5 nm, an effective fluid slip of

9% of the main stream velocity is obtained. The result is consistent with experimental l-PIV data and with the proposed

mechanism.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In classical fluid mechanics, the assumption of no-slip at a solid boundary is used as the boundary con-

dition for viscous flows at rigid walls. However, for flows at micro- and nanoscales, this assumption may no

longer be accurate. Many researchers have investigated the fluid slip phenomenon [3–12,14,21]. Choi et al.

[3] investigated experimentally the slip effects of water flow in hydrophilic/hydrophobic microchannels and

found the slip length to vary approximately linearly with the flow shear rate. Lumma et al. [4] measured the

flow profile near a wall by double-focus fluorescence cross-correlation; their analysis yields a large apparent
fluid slip at the wall. Horn et al. [5] observed the hydrodynamic slippage, which was deduced from thin film
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drainage measurements in a solution of nonadsorbing polymer. Watanabe et al. [6,7] found fluid slip at the

wall of a hydrophobic duct/pipe with relatively large scale geometry (15 · 15 mm). Ruckenstein and Rajora

[8] studied the fluid slip in a glass capillary with liquid-repellent surfaces. A large slip was inferred at the

wall from pressure drop versus flow measurements. Barrat and Bocquet [9] predicted computationally sig-

nificant slip in nanoporous media. This was confirmed experimentally by Churaev et al. [10]. Zhu and Gra-
nick [11] studied experimentally the slip in an oscillating surface force equipment. Pit et al. [12] investigated

fluid slip between spinning parallel disks. Thompson and Troian [13] simulated Newtonian liquids under

shear, via molecular dynamics. Their result suggested that there is a nonlinear relationship between the

magnitude of slip and the local shear rate at a solid surface. For a comprehensive review of fluid slippage

over hydrophobic surfaces, see [14] and the references therein. The hydrophobicity phenomena are not well

understood. For readers who are interested in hydrophobicity, we refer to the following papers and refer-

ences therein: [15–21].

Recently, Tretheway and Meinhart [1] measured the velocity profiles of deionized water flowing
through a 3D microchannel with a cross-section of 30 · 300 lm. They found that when the microchannel

surface is hydrophilic (the wall attracts water molecules), the conventional assumption of a no-slip bound-

ary condition is valid. However, when the microchannel surface is hydrophobic (the wall repels water mol-

ecules), a significant slip (approximately 10% of the free-stream velocity) near the wall was measured. The

velocity error in the experimental measurement is within 2%, and the slip length error is within ±0.45 lm.

In this paper, we describe the numerical simulation of the fluid slip on hydrophobic microchannel walls

using the lattice Boltzmann method. In the first part of our work, we report computer simulations with the

single phase (component) lattice Boltzmann method (LBM) for flow in 3D microchannels, focusing on
modeling of the slip boundary condition. In the second part, we address the mechanism of fluid slip with

the multiphase (multicomponent) lattice Boltzmann method (the S-C model). We want to point out that, in

both cases, we address modeling of the fluid slip generated by hydrophobicity in water flow, not the fluid

slip generated by Kn effects for gas flow.
2. Numerical methods – lattice Boltzmann methods

The lattice Boltzmann method is an alternative to traditional numerical methods for solving incompress-

ible Navier–Stokes equations. Instead of solving for the macroscopic quantities velocity and pressure (or

streamfunction and vorticity) directly, LBM deals with the single particle velocity distribution functions

f(x,n,t) (x represents the spatial coordinates, n the particle velocity components, and t is the time variable)

based on a simplified Boltzmann equation. For application of the lattice Boltzmann method in the area of

microscale flows, see [27,40,41].

In the first part of our work 1 we focus on modeling the slip boundary condition using a 19-discrete

velocity lattice Boltzmann model (D3Q19) [28,29]. In the lattice Boltzmann method, the bounce-back
scheme is usually used to model the no-slip boundary condition. (We note that the bounce-back scheme

can itself also generate slip. An analysis of the slip generated by bounce-back for simple flows can be found

in [37]. We found that, on a fine enough grid, the amount of slip caused by the bounce-back scheme alone is

negligible compared to the amount observed in experiment. Knudsen number related slip using the bounce-

back scheme for microscale flow can be found in [40,41].) It has also been suggested in the literature that

specular reflection may be used to model a slip boundary condition. However, the specular reflection

scheme used in our work resulted in 100% slip of the fluid on the walls. Instead, we have employed a com-
1 Preliminary results have been presented at the 2002 ASME International Mechanical Engineering Congress & Exposition, New

Orleans, Louisiana, November, 2002. See [25].
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bination of bounce-back and reflection to simulate the slip boundary condition. Thus, the slip boundary

condition is modeled by assigning a probability of q for bounce-back and 1 � q for specular reflection when

a particle velocity distribution function fj(x,t) hits a wall (100% bounce-back if nj is perpendicular to a wall).

By varying the value of q, different slip boundary conditions may be modeled. An obvious shortcoming of

this approach is its lack of predictability of the amount of slip. A similar scheme has been used by Succi [55]
to study slip motion at fluid solid interfaces with heterogeneous catalysis. Such an idea was mentioned in

[34,35], and can be dated back to 1867 when Maxwell studied the microscopic modeling of the solid bound-

ary [42]. It was once used in [43] to treat the no-slip boundary condition in the lattice gas method, and has

also been mentioned in the context of direct simulation Monte Carlo (DSMC) [44]. (In DSMC, specular

reflection is combined with the full diffusion condition.) The combination of bounce-back and specular

reflection is difficult to implement in a complex geometry. A method for addressing that issue has been pro-

posed in [45].

In the second part of our work, we make use of the multicomponent lattice Boltzmann method [49–52] to
investigate a possible mechanism [2] for generating the apparent fluid slip on a hydrophobic wall. The gen-

eral idea of the mechanism is as follows. The water used in the laboratory experiment was not degased and

contains a small amount of absorbed gas. The hydrophobic wall may repel the water molecules within a

region very close to the wall but is neutral to water vapor and air molecules. As a result, the water density

near the wall may decline, creating a depleted layer very close to the wall. Thus, a thin layer of water–air/

water vapor mixture with significantly different water and air/water vapor densities (compared to the well-

mixed air–water under standard conditions) may form in the region very near to the wall. Because the va-

por density is much smaller than that of water, the average density of the thin layer declines compared to
the average mixture density elsewhere. Since the pressure drop between the inlet and outlet that drives the

flow can be treated as approximately constant on cross-sections of the inlet and outlet, the thin layer may

move faster than the usually mixed water–air (e.g., in the case of a hydrophilic wall), which may result in

apparent slip on the hydrophobic wall.

We tested the above proposition by simulating the water–air/water vapor two-phase system with the

multicomponent lattice Boltzmann method for flow in a 3D hydrophobic microchannel. The hydrophobic

walls were modeled by applying forces in a region very close to the walls. These forces are repulsive to the

water molecules, and are neutral to the air/water vapor molecule distribution functions. These forces expo-
nentially decay away from the wall. The initial water–air mixture is assumed to be uniform. The initial den-

sity of the air in the water is calculated under standard conditions (at 20 �C and 1 atm). The

multicomponent lattice Boltzmann model we use is the S-C model, see [49–52], except that we introduced

the additional hydrophobic wall forces into the formulation. The wall force term was inserted into the right-

hand side of the equations which are used to update the velocities for computing the new equilibrium veloc-

ity distributions.

Numerous researchers have examined hydrophobic surfaces and the related forces. While the effects of

hydrophobic forces have been observed, the form and magnitude of the hydrophobic force is not well
understood. As a first approximation, we modeled the hydrophobic force as a simple exponential decay

with a magnitude and a decay length. A similar force function was explored by Vinogradova [21]. We

set the magnitude and decay length to be consistent with experimental observations. The decay length is

consistent with the experimental lengthscales at reduced viscosity layer (5 nm) [23,16] or nanobubbles

(10–30 nm) [22], as well as the value assumed by Vinogradova (decay length 5–10 nm) [21]. The magnitude

is three orders smaller than that assumed by Vinogradova [21].

2.1. Single component lattice Boltzmann method

The LBMs used in our work are in the first part the single phase isothermal LBGK model [28,29], and in

the second part the multiphase S-C model [49,50].
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The lattice Boltzmann method is a numerical technique to solve a simplified Boltzmann equation – the

LBGK model [28,29]
of ðx; n; tÞ
ot

þ n � of ðx; n; tÞ
ox

¼ � 1

s
ðf ðx; n; tÞ � f 0ðx; n; tÞÞ; ð1Þ
where s is the relaxation time and f 0 is the equilibrium distribution function. The term �(1/s)(f � f 0) is the

well-known BGK approximation [30] to the complex collision operator in the Boltzmann equation. The

particle velocity space n can be discretized by a finite set of velocities, {nj,j = 0,1,2, . . .n} (in our case,

n = 19). Let fj(x,t) be the distribution function for nj. Then we have
ofjðx; tÞ
ot

þ nj �
ofjðx; tÞ

ox
¼ � 1

s
ðfjðx; tÞ � f 0

j ðx; tÞÞ: ð2Þ
After discretization in time, the lattice Boltzmann equation (LBE) is obtained
fjðxþ nj; t þ 1Þ ¼ fjðx; tÞ �
1

s
ðfjðx; tÞ � f 0

j ðx; tÞÞ; ð3Þ
where the term �ð1=sÞðfj � f 0
j Þ represents collision (note that collision is implicitly defined in LBM, in con-

trast with molecular dynamics or direct simulation Monte Carlo). Beginning with the initial equilibrium

distribution and the distribution at time t = 0, which can be taken as the initial equilibrium distribution,
the one-step computation (from time t to time t + 1) can be divided into two substeps: (1) compute the col-

lision and update the distribution at time t by summing the collision term and the pre-collision distribution;

(2) compute the distribution at time t + 1 by streaming the post-collision distribution, i.e. the computed

right hand side of the LBE. The lattice Boltzmann equation can be treated as a second order discretization

both in time and space by the finite difference method of the LBGK equation. Any high order discretization

will lose the clear physical interpretation mentioned above.

An intuitive way to see the connection between the lattice Boltzmann equation and the LBGK model is

as follows. Following the theory of characteristics for hyperbolic partial differential equations, let n = dx/dt.
The LBGK equation becomes
df ðx; tÞ
dt

¼ � 1

s
ðf ðx; tÞ � f 0ðx; tÞÞ: ð4Þ
Note that (4) is an ordinary differential equation along the particle trajectory in space (x, t), i.e. (4) an ODE

in a Lagrangian coordinate. The projection of the trajectory on space x is n = dx/dt. After replacing the

total derivative in (4) by a finite difference (forward Euler method), noting that the discretization is done
in a Lagrangian coordinate system and that dt can be absorbed by s, the LBE (3) is recovered. For a rig-

orous derivation of the LBE from the lattice Boltzmann BGK model, see [35,36,38].

With the new distribution functions obtained, the macroscopic quantities density q(x,t) and momentum

qu(x,t) can be calculated at each node by
qðx; tÞ ¼
X
j

fjðx; tÞ; ð5Þ

ðquÞðx; tÞ ¼
X
j

njfjðx; tÞ: ð6Þ
We use a standard 3D lattice D3Q19 which has 19 discrete particle velocities and can be written as follows:
nj ¼
ð0; 0; 0Þ; j ¼ 0;

ð�1; 0; 0Þ; ð0;�1; 0Þ; ð0; 0;�1Þ; j ¼ 1; 2; . . . ; 6;

ð�1;�1; 0Þ; ð�1; 0;�1Þ; ð0;�1;�1Þ; j ¼ 7; 8; . . . ; 18:

8><
>:
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For isothermal fluids, the equilibrium distribution function f 0
j (which is a function of q and u) in the D3Q19

lattice can be computed via
f 0
j ðx; tÞ ¼ qðx; tÞwj 1þ 3nj � uðx; tÞ þ

9

2
ðnj � uðx; tÞÞ

2 � 3

2
u � u

� �
; ð7Þ
where wj is the weight, which takes the values:
wj ¼
1=3; j ¼ 0;

1=18; j ¼ 1; 2; . . . ; 6;

1=36; j ¼ 7; 8; . . . ; 18:

8><
>:
We use the conventional bounce-back scheme to model the no-slip boundary condition. We use a combi-
nation of bounce-back and specular refection to model the slip boundary condition; that is, when a particle

velocity distribution function fj hits a wall, fj is bounced back with probability q, and is reflected with prob-

ability 1 � q. Any fj which hits a wall along its normal direction is bounced back. The reflected distribution

function, fj, goes towards a neighboring node which is ±dx away from the original node, and updates the

distribution function at the neighboring node along the direction it is reflected. In our simulation, both

the bounce-back and reflection are executed when a distribution function is halfway between its original

site and a wall. Otherwise, the order of accuracy may suffer near the boundaries. Except for modeling of

the slip boundary condition, the single component LBM used in our simulation is the lattice BKG
D3Q19 model. Readers interested in LB methods can see [31–33,35,36,39,56] and the references therein.

We want to point out that the concepts of bounce-back and specular reflection may not have direct physical

analogs for liquids. They are used here as an idealization and simplification of the physics. The probabilities

of bounce-back and reflection are a ramification of the computation. They are not based directly on exper-

imental or physical results.
2.2. Multi-component lattice boltzmann method

There currently exist several versions of the multicomponent lattice Boltzmann method: the R-K model

[46,47], the S-C model [48–51], Swift [57], He [58], Seta [59], Inamuro [60], Luo [61]. The S-C model has

been tested in the static case by Hou et al. [53] and Niimura [63]. It has been successfully applied to simulate

droplet deformation under shear flow in a 3D channel, see Xi and Duncan [62]. Here in our work it is used

to simulate multiphase flow with two components. For each fluid component r (r = 0,1 in our case), a sin-

gle particle velocity distribution function f r(x,n,t) is introduced, which solves the LBGK model for that

component
of rðx; n; tÞ
ot

þ n � of
rðx; n; tÞ
ox

¼ � 1

sr
ðf rðx; n; tÞ � f rð0Þðx; n; tÞÞ: ð8Þ
Here sr and fr(0) are the relaxation time and the equilibrium distribution function for component r,
respectively.

After discretization in particle velocity space n and in time t, we get the multicomponent LBE
f r
j ðxþ nj; t þ 1Þ ¼ f r

j ðx; tÞ �
1

sr
ðf r

j ðx; tÞ � f rð0Þ
j ðx; tÞÞ; ð9Þ
where f r
j is the distribution function for the r component along the direction nj. Note that the discretization

in n is the same for each component.

One important new feature for the multicomponent lattice Boltzmann model is the introduction of an

interparticle interaction potential, which is defined as
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V ðx; yÞ ¼
X
r

X
r0

Grr0 ðx; yÞwrðxÞwr0 ðyÞ: ð10Þ
Here the Greens function, Grr0(x,y), characterizes the nature of the interaction between different compo-

nents (attractive or repulsive and its strength). The choice of w determines the equation of state of the sys-

tem under study. By selecting different G and w, various fluid mixtures and multiphase flows can be

simulated. If only the nearest neighbor interactions are considered, the Greens function G can be put into

the following form:
Grr0 ðx; yÞ ¼
0; jx� yj > c;

grr0 ; jx� yj ¼ c;

�

where c = dx/dt is the lattice speed. Here dx is the spatial width along the n direction, and dt is the time step.

In our case, c = 0 for j = 0, c = 1 for j = 1,2,3,4,5,6 and c ¼
ffiffiffi
2

p
for the other directions. grr0 is a symmetric

matrix that specifies the interaction of different components along each direction.
The equilibrium distribution f rð0Þ

j can be written as
f rð0Þ
j ðx; tÞ ¼ qrðx; tÞwj 1þ 3nj � urðx; tÞ þ

3

2
3njnj : u

rðx; tÞurðx; tÞ � urðx; tÞ � urðx; tÞ
� �� �

; ð11Þ
where wj is the weight, as in the single component case. The mass density of component r is defined by
qrðx; tÞ ¼
X
j

mrf r
j ðx; tÞ; ð12Þ
where mr is the molecular mass of component r. The velocity, ur, is computed via
qrðx; tÞurðx; tÞ ¼ qrðx; tÞ�uðx; tÞ þ sr
dpr

dt
ðx; tÞ þ srhrðxÞ; ð13Þ
where the average velocity u� is defined by
�uðx; tÞ
X
r

qrðx; tÞ
sr

¼
X
r

mr

sr
X
j

f r
j ðx; tÞnj

 !
: ð14Þ
Here dpr/dt is the net rate of momentum change that can be computed in terms of the interaction potential
dpr

dt
ðx; tÞ ¼ �

X
y

ryV ðx; yÞ ¼ �wrðxÞ
X
r0

X
j

Gj
rr0w

r0 ðxþ njÞnj: ð15Þ
Note that here the Greens function depends on the direction nj. This is because the original S-C model was

formulated on a 4D face-centered hyper-cube (FCHC) lattice. When projecting the 4D FCHC lattice onto

the D3Q19 lattice, the nearest neighbors in the 4D FCHC lattice correspond to the nearest and next nearest

neighbors in the D3Q19 lattice.

The forces h(x) that we introduce to model the hydrophobic walls are added to the right-hand side of the
equations which are used to compute the ur. Our choice of hr(x) is as follows: (index 0 denotes the fluid in

the model to simulate the water and index 1 the fluid to simulate the air/water vapor)
h1ðxÞ ¼ 0;

h0ðxÞ ¼ ð0; g2ðyÞ; g3ðzÞÞ;

g2ðyÞ ¼ �g20 expð�y=kÞ;

g3ðzÞ ¼ �g30 expð�z=kÞ;
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where y is the distance away from the side walls along the inward normal direction, and z has a similar

meaning for the top and bottom walls. The k can be determined by specifying the distance away from

the wall (y0 and z0) where the force diminishes to 1% of the maximum magnitude (g20 and g30) at the wall:

0.01g20 = g20 exp(�y0/k). In the present simulation, the parameters were chosen as follows: g20 = g30 = 0.2

(4 · 10�3 dyn/cm3 in dimensional form. We address this choice in Section 3), y0 = 30 nm, z0 = 30 nm.
The decay length is k = 6.5 nm
wr ¼ qr;

Gj
rr0 ¼

0 0:2

0:2 0

� �
for j ¼ 0; 1; . . . ; 6;

Gj
rr0 ¼

0 0:1

0:1 0

� �
for j ¼ 7; 8; . . . ; 18:
These choices of w and G have been used in the literature, in the simulation of bubbles in fluids [49,52,53].

The values of y0 and z0 were chosen to be consistent with the bubble heights observed experimentally by

Tyrell and Attard [22].

The macroscopic quantities are connected to distribution functions by the following relations:
qðx; tÞ ¼
X
r

qrðx; tÞ; ð16Þ

ðquÞðx; tÞ ¼
X
r

mr
X
j

f r
j nj þ

1

2

X
r

dpr

dt
ðx; tÞ: ð17Þ
The dimensionless viscosity of the system is defined by
m ¼
P

r
2qrsr

q � 1

6
: ð18Þ
3. Simulation results

3.1. Single component lattice Boltzmann simulation

In the first part of our work, we closely followed the parameters in the experiment [1], except that the
length of the channel was decreased from 8.25 cm in the experiment to 600 lm in the simulation. In the

simulation, the length of the channel (600 lm) was twice the width of the channel (300 lm). The shorter

channel length is justified because a periodic boundary condition is used along the channel direction. See

Fig. 1 for a diagram of the 3D microchannel used in the simulation. The microchannel length direction

is denoted as the x direction (600 lm in the simulation), the width as the y direction (300 lm in the sim-

ulation), and the depth as the z direction (30 lm in the simulation). In all the figures presented below,

the velocity profile plotted was taken on the cross-section x = 300 lm at a plane with z = 15 lm normal

to the cross-section as a function of y, or at a plane with y = 150 lm normal to the cross-section as a func-
tion of z, depending on the context. The simulation presented here uses a spatial discretization with reso-

lution 400 · 200 · 20 (x,y,z directions, respectively).

We performed simulations on a series of gradually refined grids. The number of nodes in the z direction

was 10,15,20,25,30,35. The lattice Boltzmann simulations on different grids were performed according to

the paper [54]. We found that the fluid slip percentage was convergent as the grid was refined. We also com-

puted the quantity iu2h � u4hiL2/iuh � u2hiL2 (where h is the grid spacing) on three successively refined grids
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Fig. 1. The demonstration of the 3D micro-channel for single component lattice Boltzmann simulation.
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with refinement ratio 2: 100 · 50 · 5, 200 · 100 · 10 and 400 · 200 · 20. The ratio was 3.89. This indicates

that the numerical method is of second order in space, as claimed in the literature. Due to computational

limitations, we did not check this on finer grids. Instead, we compared the velocity field presented in our

paper to those computed from a series of finer grids (500 · 250 · 25, 600 · 300 · 30, 700 · 350 · 35), and

found that they are almost indistinguishable.

The simulation was performed on the PC-cluster of the Computer Science Department at UCSB. The

cluster has 33 dual-processor (Intel Xeon) nodes that are connected by 1 GB copper. Each node has a mem-
ory of 3 GB and each processor has a speed of 2.6 GHz. The lattice Boltzmann models we used were par-

allelized by domain decomposition and MPI. See [24] for details. The simulation was run until the flow

reached steady state (approximately 500,000 steps). The conventional bounce-back scheme in LBM was ap-

plied to model the no-slip boundary condition, while a combination of bounce-back and reflection was em-

ployed to simulate the slip boundary condition.

In the no-slip case, our numerical solution matches very well the exact solution of Stokes flow assuming

a no-slip boundary condition [26], and also agrees well with the experimental result. Fig. 2 shows the veloc-

ity profiles in the case of hydrophilic walls. The profile is taken at the cross-section x = 300 lm with the z

coordinate equal to 15 lm. The x-axis is the normalized velocity, and the y-axis is the distance from the wall

(unit: micron). The squares are the experimental data, the dashed line is the exact solution, and the solid

line is the LBM simulation result. We can see that our simulation result is almost indistinguishable from

the exact solution and matches well with the experimental data.

In the slip scenario, our numerical velocity profile agrees well with that of the experiment. A slip of about

10% on the wall was attained by assigning the probability of bounce-back to 0.03 and of reflection to 0.97

when the velocity distribution function hits the wall. See Fig. 3 for velocity profiles in the case of hydro-

phobic walls. The profile is taken at the cross-section x = 300 lm with the z coordinate equal to 15 lm.
The x-axis is the normalized velocity and the y-axis is the position from the wall. The triangles represent

experimental data. The solid line is the LBM simulation result. We can see that our numerical result agrees

reasonably well with the experimental data.

In Fig. 4, both velocity profiles along the y and z directions were plotted together. The profiles are taken

at the cross-section x = 300 lm with the z coordinate equal to 15 lm as a function of y, and with the y



Fig. 3. Velocity profiles in the case of hydrophobic walls. The profile is taken at the cross-section x = 300 lm with the z coordinate

equal to 15 lm. The x-axis is the normalized velocity and the y-axis is the position from the wall. The triangles represent experimental

data. The solid line is the LBM simulation result.

Fig. 2. Velocity profiles in the case of hydrophilic walls. The profile is taken at the cross-section x = 300 lm with the z coordinate equal

15 lm. The x-axis is the normalized velocity and the y-axis is the distance from the wall (unit: micron). The squares are the

experimental data, the dashed line is the exact solution, and the solid line is the LBM simulation result.
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coordinate equal to 150 lm as a function of z. The x-axis is the normalized velocity and the y-axis is the

distance from the walls, normalized by the depth and width of the channel, respectively. The solid line is the
profile along the y direction, and the curve plotted by triangles is the profile along the z direction. We can

see that the fluid slip in the z direction (channel depth) is slightly larger than the slip in the y direction (chan-

nel width). Experimental data are not available for the velocity profile along the depth direction.

Fig. 5 shows the slip length as a function of location along the width direction and the depth direction.

Fig. 5(a) plots fluid slip length at the top or bottom walls as a function of distance from the side wall along

the width direction, and Fig. 5(b) plots fluid slip length at the side walls as a function of distance from the

bottom wall along the depth direction. We see that the variation of slip length along the side walls (sepa-

rated by 300 lm) is significantly different from the variation of slip length along the bottom and top walls
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normalized velocity and the y-axis is the distance from the walls, normalized by the depth and width of the channel, respectively.
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Fig. 5. (a) and (b) depict how the fluid slip length varies along the perimeter of the channel at streamwise position of x = 300 lm.

(a) Variation of slip length as a function of y along the top or bottom wall. (b) Variation of slip length as a function of z along the side

channel walls. (c) Measurement sample plane and the locations of slip length plotted in (a) and (b).
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(separated by 30 lm). However, the magnitudes are similar, ranging between 1.1 and 1.4 lm. Fig. 5(c)

shows the measurement sample plane and the locations of slip length plotted in Figs. 5(a) and (b).

3.2. Multi-component lattice Boltzmann simulation

In the second part of our work, we investigated a possible generating mechanism for apparent fluid slip
[2], via the multi-component lattice Boltzmann method (the S-C model). We performed the simulation on a

0.1 · 1 · 2 lm3 microchannel. The grid spacing is 5 nm. The non-dimensional hydrophobic wall force used

in the simulation is 0.2, corresponding to a physical force of 4 · 10�3 dyn/cm3 with a decay length of 6.5
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nm, as was specified in Section 2. The appropriate magnitude of this force is not well defined. However,

Vinogradova [21] modeled attractive hydrophobic interactions as a decaying exponential with a magnitude

of 1 dyn and a decay length of between 5 and 15 nm. For the current simulation, the force function was

chosen so that the simulation results would be consistent with experimental observations. While the decay

length, k = 6.5 nm, is consistent with the values of Vinogradova [21], the magnitude of the hydrophobic
force, 4 · 10�3 dyn, is significantly lower. The difference may arise from possible non-uniformities in the

hydrophobic OTS coatings in the microchannels. This repulsive hydrophobic force causes the density of

the synthetic fluid used to simulate water in the multi-component lattice Boltzmann simulation to be greater

than 1. We rescaled the density to 1 for the fluid used to model water by the maximum density in the sim-

ulation result (about 1.07).

We performed simulations on a series of gradually refined grids. The number of nodes in the z

direction was 10,15,20,25,30. We found that the fluid slip percentage was convergent as the grid

was refined.
Fig. 6 shows the fluid densities as a function of distance away from the side wall at the cross-section x = 1

lm and z = 50 nm. The x-axis is the density and the y-axis is the distance from the side wall. Fig. 6(a) shows

the density of the fluid used to simulate water in the model along the y direction (in the middle of the z

direction) on a cross-section in the middle of the channel (x direction). Fig. 6(b) shows the density of

the fluid used to simulate water vapor/air. We can see that the density of water is decreased and that of

water vapor/air is increased close to the walls. Fig. 7 gives a detailed picture of the density change close

to the wall. Sakurai et al. [20] have also observed a drastic decrease of the water molecule number density

at a monolayer–water interface from the simulation results of water between hydrophobic surfaces, via
molecular dynamics. Our results are consistent with theirs.

Fig. 8 shows the normalized streamwise velocity profile and a local blowup along the y direction at cross-

section x = 1 lm for z = 50 nm. The x-axis is the normalized velocity, and the y-axis is the position from the

side wall (unit: micron). The solid line (in (a) and (b)) is the velocity profile when no wall forces are present.
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Fig. 6. Normalized fluid densities as a function of distance away from the side wall at the cross-section x = 1 lm and z = 50 nm. The x-

axis is the density of water or air/water vapor, and the y-axis is the distance from the side wall. The graph (a) is the density profile for

water and the graph (b) is the density profile for air/water vapor.
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Fig. 7. Fluid density variation depicted in Fig. 6. The 50 nm region close to the side wall is shown.
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Fig. 8. Normalized streamwise velocity profiles along the y direction at cross-section x = 1 lm for z = 50 nm. The solid lines are the

velocity profiles when no wall forces are used. The dotted or dashed line is the case where wall forces are introduced. The graph (a) is

normalized velocity at z = 50 nm as a function of distance from the side wall (y direction). The graph (b) shows the normalized velocity

profile near the side channel wall.
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The dotted line (in part (a)), or the dashed line (in part (b)) is the case where wall forces are introduced. In

contrast to the former case, the latter results in apparent slip at the walls. (See Fig. 8(b) for the local blowup

near the side wall.) We can see from Figs. 6–8 that in the region very close to the walls, the water density

decreases and the water vapor/air density rises. This enables the fluid slip on the walls (approximately 9% of
free stream velocity) compared to the solid lines in Fig. 8, which illustrate the case where no hydrophobic

wall forces were applied.
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4. Summary and discussion

With the single phase lattice Boltzmann method (D3Q19 model), we simulated the flow of water in a 3D

microchannel with hydrophilic/hydrophobic walls. The classic bounce-back scheme was used to model the

hydrophilic walls, while a combination of bounce-back and specular reflection was applied to model the
partial slip boundary condition at the hydrophobic walls. Good quantitative agreement was observed be-

tween the simulations and previous experimental results. In the case of hydrophilic walls, the simulation

result agrees almost exactly with the analytic solution. In the case of hydrophobic walls, a 10% slip was

attained by assigning the probability of bounce-back to 0.03 and the probability of reflection to 0.97.

The value of q is consistent with Succi�s work [55]. This seems to indicate that partial fluid slip generated

by hydrophobicity may be modeled by a combination of bounce-back and specular reflection. However, it

remains to be further verified whether the combination scheme can accurately capture the slip motion

caused by hydrophobicity. See [55] for details.
With the multiphase lattice Boltzmann method (the S-C model), we investigated a possible mechanism

for fluid slip. Due to computational limitations, the corresponding physical size of the simulation domain

was 0.1 · 1 · 2 lm, whereas the experimental results were obtained in a microchannel with a cross-section

of 30 · 300 lm. The hydrophobic walls were modeled by applying an exponentially decaying force of

4 · 10�3 dyn with a decay length 6.5 nm from the wall, which is consistent with the work of Vinogradona

[21]. This force repels the water molecules, but has no effect on the air/water vapor molecules. The force

produces a slip of approximately 9% of the main stream velocity, which corresponds to the experimental

l-PIV results. It indicates that the presence of a depleted water layer (low density region) near the hydro-
phobic surface may produce the apparent fluid slip observed experimentally.
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